2020 CONSUMER CONFIDENCE REPORT

ANNUAL WATER QUALITY REPORT FOR THE PERIOD OF JANUARY 1 TO DECEMBER 31, 2020.
THIS REPORT IS INTENDED TO PROVIDE YOU WITH IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER AND THE EFFORTS MADE BY MCALLEN PUBLIC UTILITY TO PROVIDE SAFE DRINKING WATER.

PWS ID NUMBER: TX1080006
I am pleased at the opportunity to briefly communicate our passion here at McAllen Public Utility for providing safe, affordable, high quality drinking water to all our McAllen residents and rate payers alike. We stand by our product, our people and our water and waste water infrastructure. My hope is that all may enjoy the benefits of our staff’s outstanding commitment to servicing customers, our system’s impeccable reliability that residents have grown accustomed to and our product that is vital to a vibrant, growing community. Quality of life is comprised of several amenities, none of which are as important as affordable, safe, quality water. May we never take it for granted.

Sincerely,

Marco A. Vega, P. E.
General Manager

The McAllen Public Utility (MPU) is governed by the McAllen Public Utility Board (MPUB), which is an elected board. The Board of Trustees of the McAllen Public Utility was created February 2, 1945 to oversee all aspects of water and wastewater for the City of McAllen. The Board consists of four members elected at large by place, in a citywide election for four-year terms and one ex-officio member appointed by the Mayor.

The McAllen Public Utility Board meets publicly on the 2nd and 4th Tuesday of each month at 4 p.m. at City Hall, 1300 Houston Ave., McAllen, Texas. These meetings are also broadcast live and recorded for viewing on MCN, which is also available for viewing at www.mcallenpublicutility.com.
Mission Statement

McAllen Public Utility is dedicated to providing clean, safe drinking water. We are committed to consistently providing quality services and quality of life to all who live, work and visit the city of McAllen. We are working hard to educate the public on the issues surrounding water use and conservation.

Superior Public Water System

McAllen Public Utility has been designated by the Texas Commission on Environmental Quality (TCEQ) a Superior Public Water System in view of the high standards of water service made available to the residents of McAllen. For over 25 years we have been recognized as a Superior Public Water Supply System, which achieves and maintains recognition for those systems who exceed the minimum acceptable standards of the TCEQ.

In 2020, and with a population of 175,700 people, the 2 McAllen Water Treatment Plants must now meet a minimum daily production capacity of 46.39 million gallons of water. Our current system capacities are 59.7 million gallons of treated water per day and growing.

South Water Treatment Plant: 47.0 MGD
North Water Treatment Plant: 11.2 MGD
Ground Water Well: 1.5 MGD
Our Drinking Water is Regulated

This report is a summary of the quality of the water we provide to our customers. The analysis was made using the data from the most recent Texas Commission of Environmental Quality and U.S. Environmental Protection Agency required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about your drinking water supply.

All Drinking Water May Contain Contaminants

When drinking water meets federal standards, there may not be any health benefits to purchasing bottled water or point-of-use devices (such as a faucet filtration system). Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at (800)-426-4791. The TCEQ completed an assessment of your source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confidence Report.

Secondary Constituents

Many constituents such as calcium, sodium, or iron, which are often found in drinking water, can cause taste, color, or odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas. These constituents are not causes for health concern; therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

Required Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Special Notice

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.
Where do we get our drinking water?

The source of drinking water used by McAllen Public Utility is Surface Water. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://dww.tceq.state.state.tx.us/DWW. For more information on source water assessments and protection efforts at our system, please contact us. MPU receives water from the Falcon and Amistad Dams, located in Starr and Val Verde Counties, respectively.

Water Treatment Process

Our water is transferred from the Rio Grande River by the Irrigation districts into our reservoirs. A reservoir is an artificial lake used to store water. Here in the City of McAllen we have three reservoirs.

- Boeye Reservoir was established in 1958. This reservoir can hold up to 180 million gallons.
- The North Water Plant Reservoir was established in 2004 and can hold 200 million gallons.
- The new Boeye Reservoir was established in 2011 and can hold up to 300 million gallons.

Disinfection

Disinfection is the first step in the water treatment process. In this step we will combine chlorine and sodium chlorite to generate chlorine dioxide. It is then injected into our raw water line where it will kill harmful bacteria.

Secondary Disinfection

A second disinfection process occurs by utilizing chlorine and ammonia to form chloramines. This secondary disinfection process ensures that disinfection is carried out to the distribution systems.

Flocculation

Coagulant is introduced to raw water and mixed rapidly to create a floc. Water will flow through decreasingly slower mixers allowing floc to conglomerate.

Sedimentation

After the flocculation process, water flows into a sedimentation basin. This basin allows the flocculated water to settle. A detention time of at least 6 hours is required to allow the floc to settle. The settled floc called sludge is then collected with a rake system to the center of the basin. The sludge is then disposed of to the lagoons then dewatered and hauled to sanitary landfills.

Filtration

Filtration is the final step in removing suspended matter and chlorine resistant microorganisms such as Giardia and Cryptosporidium. These filters consist of anthracite coal, and two types of sand which are coarse and fine and various sizes of gravel, which are layered on top of an under drain system.

Pumping and Storage

After the treatment process, the water is sent to storage domes which can hold up to 2 million gallons each. From there, we have high service pumps that push up to 30 million gallons in the system, including the water towers. These water towers store up to 6.75 million gallons of water.
How to read your water quality report:

Definitions and Abbreviations

- **Action Level**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **Action Level Goal (ALG)**: The level of contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
- **Avg**: Regulatory compliance with some MCLs are based on running annual average monthly samples.
- **Level 1 Assessment**: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- **Level 2 Assessment**: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
- **Maximum Contaminant Level or MCL**: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **Maximum Contaminant Level Goal or MCLG**: The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **Maximum Residual Disinfectant Level or MRDL**: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **Maximum Residual Disinfectant Level Goal or MRDLG**: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **MFL**: Million Fibers per Liter (A measure of asbestos.)
- **MREM**: Millirems per year (A measure of radiation absorbed by the body.)
- na: Not applicable.
- **NTU**: Nephelometric Turbidity Units (A measure of turbidity.)
- **pCi/L**: Picocuries per liter (A measure of radioactivity.)
- **ppb**: Micrograms per liter or parts per billion-or one ounce in 7,350,000 gallons of water.
- **ppm**: Milligrams per liter or parts per million-or one ounce in 7,350 gallons of water.
- **ppq**: Parts per quadrillion, or picograms per liter (pg/L).
- **ppt**: Parts per trillion, or nanograms per liter (ng/L).
Coliform Bacteria

WATER QUALITY TEST RESULTS:

<table>
<thead>
<tr>
<th>Maximum Contaminant Level</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead and copper</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Lead and Copper

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2018</td>
<td>1.30</td>
<td>1.30</td>
<td>0.0174</td>
<td>0.0061-23.68</td>
<td>ppm</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Water Quality Test Results: Regulated Contaminants

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2018</td>
<td>0.015</td>
<td>0.0022</td>
<td>0.0004-0.0037</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Disinfection By-products

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/2018</td>
<td>0.0238</td>
<td><0.0238</td>
<td><0.0001</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Total Trihalomethanes (THM)

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/2018</td>
<td>0.0238</td>
<td><0.0238</td>
<td><0.0001</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Trihalomethanes (THM)

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/2018</td>
<td>0.0238</td>
<td><0.0238</td>
<td><0.0001</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)/MCL</th>
<th>90th Percentile</th>
<th>Range of Individual Samples</th>
<th>Range of Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/2018</td>
<td>0.0238</td>
<td><0.0238</td>
<td><0.0001</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all the TOC removal requirements set, unless a TOC violation is noted in the violations section.

Water Loss

The water loss audit submitted to the Texas Water Development Board for the period of Jan-Dec 2020, our system water loss was an estimated 10.69%. If you have any questions about the water loss audit please call 956-681-1600.

*EPA considers 5 pCi/L to be the level of concern for beta particles.

*Radioactive Contaminants are sampled every 3 years as per TCEQ regulations, next due year 2021.
Definiciones y Abreviaturas

Las siguientes tablas contienen términos y medidas científicas, algunas de las cuales pueden requerir una explicación.

- **AL**: Nivel de acción. Grado de concentración de un contaminante que, al ser excedido, se debe llevar a cabo un tratamiento u otros requisitos a los cuales se debe tener un sistema de abastecimiento de agua.

- **Objetivo del nivel de acciones (ALG)**: El nivel de un contaminante en el agua potable por debajo del cual no existe un riesgo conocido o esperado para la salud. Las ALG permiten un margen de seguridad.

- **Promedio (Avg)**: El cumplimiento normativo con algunos MCL se basa en el promedio anual de muestras mensuales.

- **Evaluación de grado 1**: Una evaluación de grado 1 es un estudio del acueducto para identificar posibles problemas, y de ser factible, determinar la causa de la presencia de coliformes totales.

- **Evaluación de grado 2**: Una evaluación de grado 2 es un estudio detallado del acueducto para identificar posibles problemas, y de ser factible, determinar por qué se excedió el grado de contaminación máximo (MCL por sus siglas en inglés) de Escherichia coli (E. coli) y/o por qué se detectaron coliformes totales en múltiples ocasiones.

- **MCL**: Grado máximo de contaminantes es el grado más alto de un contaminante que se permite en el agua potable. Los MCL se establecen lo más cerca posible a los MCLG mediante el uso de la tecnología disponible más avanzada de saneamiento.

- **MCLG**: Meta máxima en el nivel de contaminantes es el grado de concentración de un contaminante en el agua potable por debajo del cual no existe o no se espera que haya un riesgo conocido para la salud. Los MCLG ofrecen un margen de seguridad.

- **MRDL**: Nivel máximo residual de desinfectante es el nivel más alto de desinfectante permitido en el agua potable. Hay evidencia convincente que es necesaria la adición de un desinfectante para controlar los contaminantes microbianos.

- **MRDLG**: Objetivo de nivel máximo residual de desinfectante es el nivel de desinfectante en el agua potable bajo el cual no se conocen o se espera causar riesgo a la salud. Los MRDLG no reflejan los beneficios del uso de desinfectantes para controlar los contaminantes microbianos.

- **MFL**: millones de fibras por litro (una medida de amianto)

- **mrem/año**: Milirems por año (unidades de radiación absorbidas por el cuerpo).

- **na**: no aplica

- **NTU**: Unidades nefelométricas de turbidez. Unidades que miden la turbidez del agua.

- **pCi/L**: Picocuries por litro (una medida de la radiactividad).

- **ppb**: Partes por mil millones o microgramos por litro.

- **ppm**: Partes por millón, o miligramos por litro

- **ppq**: Partes por quadrillon, o picogramas

- **ppt**: Partes por trillon o nanogramos por litro
Resultados de la prueba de calidad del agua

Bacterias Coliformes

<table>
<thead>
<tr>
<th>Meta de Nivel Máximo</th>
<th>Nivel máximo de concentración de coliformes totales</th>
<th>El más alto número de coliformes fecales o E. Coli</th>
<th>Nivel máximo de coliformes fecales o E. Coli</th>
<th>Total no. de coliformes fecales o Muestras de E. Coli</th>
<th>Violación</th>
<th>Procedencia del contaminante</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>No</td>
<td>Presente en el tracto digestivo del suelo, agua, humanos y animales</td>
</tr>
</tbody>
</table>

Plomo y Cobre

<table>
<thead>
<tr>
<th>Productos derivados de la desinfección</th>
<th>Fecha de muestra</th>
<th>Nivel más alto detectado</th>
<th>Rango de nuestras individuales</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unidades</th>
<th>Violación</th>
<th>Procedencia del contaminante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloro</td>
<td>09/01/2018</td>
<td>1.30</td>
<td>0.01-5.824</td>
<td>0.8</td>
<td>1</td>
<td>ppm</td>
<td>No</td>
<td>Subproducto de la desinfección del agua potable.</td>
</tr>
<tr>
<td>Ácidos Halogenados (HAA5)</td>
<td>09/01/2018</td>
<td>0.136</td>
<td>0.01-0.169</td>
<td>0.8</td>
<td>0</td>
<td>ppm</td>
<td>No</td>
<td>Subproducto de la desinfección del agua potable.</td>
</tr>
<tr>
<td>Trihalometanos totales (THM)</td>
<td>09/01/2018</td>
<td>0.064</td>
<td>0.028-0.64</td>
<td>0.8</td>
<td>0</td>
<td>ppm</td>
<td>No</td>
<td>Subproducto de la desinfección del agua potable.</td>
</tr>
</tbody>
</table>

Contaminantes

Técnica de tratamiento o TT: un proceso requerido para reducir el nivel de un contaminante en el agua potable.

Plomo y Cobre

<table>
<thead>
<tr>
<th>Contaminantes Inorgánicos</th>
<th>Fecha de muestra</th>
<th>Nivel más alto detectado</th>
<th>Rango de nuestras individuales</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unidades</th>
<th>Violación</th>
<th>Procedencia del contaminante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenico</td>
<td>2020</td>
<td>0.024</td>
<td><0.02-0.024</td>
<td>0.0</td>
<td>0.01</td>
<td>ppm</td>
<td>No</td>
<td>Erosión de depósitos naturales; Agua contaminada por desechos provenientes de huertas y de producción de vidrio y electroc.</td>
</tr>
<tr>
<td>Bario</td>
<td>2020</td>
<td>0.111</td>
<td>0.098-2.111</td>
<td>2.0</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Efluentes de desechos de perforación o de refinerías de metales; erosión de depósitos naturales.</td>
</tr>
<tr>
<td>Cianuro</td>
<td>2020</td>
<td>0.17</td>
<td>0.14-0.17</td>
<td>2.0</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Efluentes de las fábricas de acero y metales; efluentes de fábricas de plásticos y fertilizantes</td>
</tr>
<tr>
<td>Fluoro</td>
<td>2020</td>
<td>0.70</td>
<td>0.59-0.70</td>
<td>4.0</td>
<td>4</td>
<td>ppm</td>
<td>No</td>
<td>Erosión de depósitos naturales; aditivo para fomentar la salud dental; efluentes de fábricas de fertilizantes y de aluminio.</td>
</tr>
<tr>
<td>Nitro (como N)</td>
<td>2020</td>
<td>0.25</td>
<td><0.05-0.25</td>
<td>1.0</td>
<td>1</td>
<td>ppm</td>
<td>No</td>
<td>Agua contaminada por el uso de fertilizantes; Inhibición de tanques sépticos y yedres de almacenamiento; erosión de depósitos naturales.</td>
</tr>
<tr>
<td>Selenio</td>
<td>2020</td>
<td>0.044</td>
<td>0.030-0.045</td>
<td>0.05</td>
<td>0</td>
<td>ppm</td>
<td>No</td>
<td>Descarga de refinerías de petróleo y metal; Erosión de depósitos naturales.</td>
</tr>
</tbody>
</table>

Radioactivos

<table>
<thead>
<tr>
<th>Productos derivados de la desinfección</th>
<th>Fecha de muestra</th>
<th>Nivel más alto detectado</th>
<th>Rango de nuestras individuales</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unidades</th>
<th>Violación</th>
<th>Procedencia del contaminante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisores de Beta/tautones</td>
<td>02/19/2018</td>
<td>3.6</td>
<td>1.6-5.6</td>
<td>50</td>
<td>50</td>
<td>pCi/L</td>
<td>No</td>
<td>Desintegración radiactiva de depósitos naturales y artificiales.</td>
</tr>
<tr>
<td>Rn-222/natural</td>
<td>02/13/2018</td>
<td><1.0</td>
<td><1.0-1.0</td>
<td>0.0</td>
<td>0</td>
<td>pCi/L</td>
<td>No</td>
<td>Erosión de depósitos naturales</td>
</tr>
<tr>
<td>Al-fayloando el radón y el uranio</td>
<td>02/1/2018</td>
<td>1.0</td>
<td>0.1-1.0</td>
<td>0.15</td>
<td>0.15</td>
<td>pCi/L</td>
<td>No</td>
<td>Erosión de depósitos naturales</td>
</tr>
<tr>
<td>Uranio</td>
<td>02/19/2018</td>
<td>2.7</td>
<td>2.7-2.7</td>
<td>0.0</td>
<td>0</td>
<td>ug/L</td>
<td>No</td>
<td>Erosión de depósitos naturales</td>
</tr>
</tbody>
</table>

Disinfectante Residual

<table>
<thead>
<tr>
<th>Productos derivados de la desinfección</th>
<th>Año</th>
<th>Nivel promedio</th>
<th>Rango de nivels detectados</th>
<th>MRDL</th>
<th>MRDGL</th>
<th>Unidades</th>
<th>Violación</th>
<th>Fuente en el agua potable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloro</td>
<td>2020</td>
<td>3.06</td>
<td>2.81-3.27</td>
<td>4.00</td>
<td>4.00</td>
<td>ppm</td>
<td>No</td>
<td>Aditivo de agua utilizado para controlar los microorganismos.</td>
</tr>
</tbody>
</table>

turbidez

<table>
<thead>
<tr>
<th>Año</th>
<th>Nivel detectado</th>
<th>Límite (técnica de tratamiento)</th>
<th>Violación</th>
<th>Probable fuente de contaminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>0.07 NTU</td>
<td>0.3 NTU</td>
<td>No</td>
<td>La escorrentía de suelo.</td>
</tr>
<tr>
<td>2020</td>
<td>1.00%</td>
<td>0.3 NTU</td>
<td>No</td>
<td>La escorrentía de suelo.</td>
</tr>
</tbody>
</table>

Carbono Orgánico Total

El porcentaje de eliminación de carbono orgánico total (TOC) se midió cada mes y el sistema cumplió con todas las requisitos de eliminación de TOC establecidos, a menos que se observara una violación de TOC en la sección de violaciones.

Pérdida de agua

En la auditoria de pérdida de agua presentada a la Junta de Desarrollo del Agua de Texas para el periodo de enero a diciembre de 2020, nuestro sistema perdió un estimado de 10.69% de agua. Si tienes alguna pregunta sobre la auditoria de pérdida de agua, llame al 956-681-1600.
HAVE QUESTIONS REGARDING YOUR WATER AT YOUR HOME, SCHOOL, OR BUSINESS?

Directory

Customer Service: 956-681-1600
Utility Administration: 956-681-1630
Water Plant: 956-681-1700
Waste Water Plant: 956-681-1750
Pretreatment: 956-681-1760
After Hours: 956-681-1717

Address

1300 W Houston Ave
McAllen, TX 78501

hours

Lobby: Monday- Friday
8:00AM to 5:00PM

Drive-Thru: Monday- Friday
7:30AM to 5:30PM

find us online

McAllenPublicUtility.com
A look back at 2020

McALLEN PUBLIC UTILITY

Trust In Every Drop